DetReduce: Minimizing Android GUI Test Suites for Regression
Testing

Wontae Choi*

University of California, Berkeley
wtchoi@cs.berkeley.edu

George Necula
University of California, Berkeley
necula@cs.berkeley.edu

ABSTRACT

In recent years, several automated GUI testing techniques for An-
droid apps have been proposed. These tools have been shown to
be effective in achieving good test coverage and in finding bugs
without human intervention. Being automated, these tools typically
run for a long time (say, for several hours), either until they saturate
test coverage or until a testing time budget expires. Thus, these
automated tools are not good at generating concise regression test
suites that could be used for testing in incremental development of
the apps and in regression testing.

We propose a heuristic technique that helps create a small regres-
sion test suite for an Android app from a large test suite generated
by an automated Android GUI testing tool. The key insight behind
our technique is that if we can identify and remove some com-
mon forms of redundancies introduced by existing automated GUI
testing tools, then we can drastically lower the time required to
minimize a GUI test suite. We have implemented our algorithm in
a prototype tool called DETREDUCE. We applied DETREDUCE to sev-
eral Android apps and found that DETREDUCE reduces a test-suite
by an average factor of 16.9x% in size and 14.7X in running time.
We also found that for a test suite generated by running SWIFT-
HAaND and a randomized test generation algorithm for 8 hours,
DETREDUCE minimizes the test suite in an average of 14.6 hours.

CCS CONCEPTS
. Software and its engineering — Software testing and de-
bugging;

KEYWORDS

Android, GUI, Test minimization

“Currently at Google Inc.
This work has been done while the author was a visiting student at University of
California, Berkeley

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE °18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5638-1/18/05...$15.00
https://doi.org/10.1145/3180155.3180173

Koushik Sen

University of California, Berkeley
ksen@cs.berkeley.edu

Wenyu Wang "
University of Illinois, Urbana-Champaign
wenyu2@illinois.edu

ACM Reference Format:

Wontae Choi, Koushik Sen, George Necula, and Wenyu Wang. 2018. De-
tReduce: Minimizing Android GUI Test Suites for Regression Testing. In
Proceedings of ICSE ’18: 40th International Conference on Software Engineering
, Gothenburg, Sweden, May 27-June 3, 2018 (ICSE ’18), 11 pages.
https://doi.org/10.1145/3180155.3180173

1 INTRODUCTION

In recent years, there has been a significant surge in the usage and
development of apps for smartphones and tablets. Developers are
writing more apps for mobile platforms than for desktops. The com-
plexity of mobile apps often lies in their graphical user interfaces
(GUISs). Testing efforts of such apps mostly focus on the behavior
of graphical user interfaces.

Several automated GUI testing techniques have recently been
proposed. The techniques include learning-based testing [8, 29, 31,
32], model-based testing [1, 23, 45], genetic programming [27, 28],
fuzz testing 25, 26, 37], and static-analysis based approaches [4, 33,
34, 44, 49]. The goal of the majority of these techniques is to achieve
good code and screen coverage (i.e. covering all distinct screens of
an app), and to find common bugs such as crashes and unrespon-
siveness. Most of these techniques work by injecting sequences of
automatically generated user inputs or actions to an app for several
tens of hours. We consider each sequence of actions injected by
these techniques to be a test case, and the set of all sequences of
actions to be a test suite.

Although automated GUI testing techniques could find bugs,
they tend to generate large test suites containing thousands of
test cases. Each test case can contain tens to thousands of user
actions. Such a large test suite can take several hours to execute,
because the running time of a test suite is linear in the size of the
test suite.! However, regression tests should be fast so that they
can be used frequently during development. Therefore, such test
suites are difficult to use in regression testing.

In this paper, we address the problem of generating a small
regression GUI test suite for an Android app. We assume that we
are given a large test suite generated by an existing automated
GUI testing tool. We also assume that the test suite is replayable
in the sense that if we rerun the test suite multiple times we get
the same coverage and observe the same sequence of app screens.
(The evaluation section has details on how to obtain a replayable

! For a GUI app, it is recommended to restrict the amount of computation performed
by each event handler to improve responsiveness. Therefore, the running time of a
GUI test case tends to be linear in the length of the test case.

https://doi.org/10.1145/3180155.3180173
https://doi.org/10.1145/3180155.3180173

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

test suite from an automated GUI testing tool.) We assume that
the test suite takes several hours to run on the app. Our goal is to
spend a reasonable amount of time, say a day, to generate a small
regression test suite for the app that runs for less than an hour and
that achieves similar code and screen coverage as the original test
suite provided as input.

A couple of techniques have been proposed to minimize test
suites for GUIs. For example, Clapp et al. [7] and Hammoudi et al.
[17] proposed delta-debugging [48] based algorithms. These tech-
niques work well if the size of the input test suite is small, containing
less than one thousand user inputs. However, they fail to scale for
large test suites because they depend heavily on the rapid gen-
eration and feasibility checking of new test cases. Unfortunately,
for most real-world GUI apps, it takes few minutes to check the
feasibility of a new input sequence. Therefore, for large test suites
containing tens of thousands of user actions, a delta-debugging
based approach could take more than a month to effectively mini-
mize a test suite. McMaster and Memon [30] proposed a GUI test
suite reduction technique for reducing the number of test cases in
a test suite. However, this technique does not make any effort to
reduce the size of each test case. In our experimental evaluation, we
observed that test cases generated by an automated tool can contain
subsequences of redundant user actions, which can be removed to
obtain smaller test suites.

We propose an Android GUI test suite reduction algorithm that
can scalably and effectively minimize large test suites. The key
insight behind our technique is that if we can identify and remove
some common forms of redundancies introduced by existing au-
tomated GUI testing tools, then we can drastically lower the time
required to minimize a test suite. We manually analyzed test suites
generated by existing automated GUI testing tools and found there
are three kinds of redundancies that are common in these test
suites: 1) some test cases can be safely removed from a test suite
without impacting code and screen coverage, 2) within a test case,
certain loops can be eliminated without decreasing coverage, and
3) many test cases share common subsequences of actions whose
repeated execution can be avoided by combining fragments from
different action sequences. Based on these observations, we devel-
oped an algorithm that removes these redundancies one-by-one
while preserving the overall code and screen coverage of the test
suite.

In order to identify redundant loops and common fragments of
test cases, we define a notion of state abstraction which enables
us to approximately determine if we are visiting the same abstract
state at least twice while executing a test case. If an abstract state
is visited twice during the execution, we have identified a loop
which can potentially be removed. Similarly, if the executions of
two test cases visit an identical subsequence of abstract states, we
know that fragments from the two test cases can be combined to
obtain a longer test case which avoids re-executing the common
fragment. Whenever we get a new test case by removing a loop
or by combining two fragments, the resulting test case may not
traverse the same abstract states as expected. In our algorithm,
we check the feasibility of a newly created test case by executing
it a few times and by checking if the execution visits the same
sequence of abstract states every time—we call this replayability.
We noticed that if our state abstraction is too coarse-grained our

Wontae Choi, Koushik Sen, George Necula, and Wenyu Wang

feasibility checks often fail, leading to longer running time. On the
other hand, if we use a too fine-grained state abstraction, we fail to
identify many redundancies. One contribution of this paper is to
design a good enough abstraction that works well in practice.

One advantage of our algorithm over delta-debugging or other
black-box algorithms is that we do not blindly generate all possible
new test cases that can be constructed by dropping some actions.
Rather, we use a suitable state abstraction to only drop potentially
redundant loops. Another advantage is that we create new test cases
by combining fragments from input test cases. This enables us to
come up with new, longer test cases which cannot be generated
using delta-debugging or other test suite reduction techniques.
Longer test cases are usually better than multiple shorter test cases
because we do not have to perform a clean restart of an app. A clean
restart of an app requires us to kill the app, erase app data, and
erase SD card contents, which is very time consuming. A longer
test case in place of several shorter test cases avoids several such
expensive restarts.

We have implemented our algorithm in a prototype tool, called
DETREDUCE, for Android apps. The tool is publicly available at https:
//github.com/wtchoi/swifthand2. We applied DETREDUCE to several
apps and found that DETREDUCE could reduce a test-suite by a factor
of 16.2x in size and a factor of 14.7X in running time on average. We
also found that for a test suite generated by running SwirTHAND [5]
and a random testing algorithm [5] for 8 hours, DETREDUCE can
reduce the test suite in an average of 14.6 hours. We are not aware
of any existing technique that could get such huge reduction in
the size of a large GUI test suite in such a reasonable amount of
time. Note that DETREDUCE often runs longer than generating all
test cases; however, running DETREDUCE is a one-time cost. Once a
regression suite has been generated, it will be run many times and
each run will take a fraction of the time required to generate all
test cases.

2 OVERVIEW

Automated GUI testing tools, such as Monkey [12], A3E [2], Dyn-
odroid [26], MobiGUITAR [1], and Orbit [45], explore the GUI of an
app automatically without any prior knowledge about the behavior
of the app. These automated tools are, however, not good at gener-
ating concise regression test suites that could be used for testing in
incremental development of the apps and in regression testing. We
propose a heuristic technique that helps to create a small regression
test suite for a GUI app given a large test suite generated by an
automated GUI testing tool. We next give a brief overview of our
technique using formal notation and a series of examples.

2.1 Definitions and Problem Statement

Trace. The execution of an app on a sequence of user inputs can be
denoted by a trace of the form sy 91:C1 s 92.C2 ... an.Cn s, .Eachs;
is an abstract state of the program, usually computed by abstracting
the screen of the app. Each si_laiv_ci)si is a transition, denoting
that the app transitioned from state s;_1 to state s; on user input (or
action) a; and covered the set of branches C; during the transition.
Several event handlers could be triggered during a transition: the
branches covered during the transition are the branches of the
triggered event handlers (and the methods transitively called from

https://github.com/wtchoi/swifthand2
https://github.com/wtchoi/swifthand2

DetReduce: Minimizing Android GUI Test Suites for Regression Testing

these event handlers) that are executed during this transition. Here
we focus on branch coverage, but one could use other kinds of
coverage for C;.

Coverage. If si_l_“i;c_i>si is a transition, then C; U {s;} is
the coverage of the transition. In the coverage we include both
the set of branches and the abstract states visited by the tran-
sition. We can similarly define the coverage of a trace r =
50 4C1 59 92C2 . an.Cn 5, as the union of the coverage of all
the transitions in the trace, i.e. C(t) = Uje[y,n)(Ci U {si}).

Replayable traces. In our technique, we are only interested in
an,Cn s, of an

replayable traces. A trace T = sp 9.C1 51 92.C2 .

app is replayable if every time the app is given the sequence of user
actions aj, ag, .. .,an in a state sy (the initial state of the app), it
generates the exact trace 7.

Test suite: A set of replayable traces. We assume that an au-
tomated testing tool for GUI generates a set Ts of replayable traces
that can be treated as a regression test suite. The coverage of a set
of traces T, denoted by C(T), is defined as the union of the coverage
of the traces contained in the set. The cost of a set of traces T is the
pair (37 ¢t |7], |T]). The first component of the pair gives the num-
ber of transitions present in the traces in T. This number roughly
estimates the amount of time necessary to replay the traces in T.
Between the replay of two traces, one needs to perform a clean
restart of the app by erasing the app data and SD card contents,
which has high cost. In order to take that cost into account, we
have a second component in the pair corresponding to the number
of clean restarts necessary to replay all the traces in T.

Problem statement. Given a set of replayable traces T, the goal
is to find a minimal set of traces Ty such that Ty is replayable, Ty
consists of transitions from the traces in Ts, C(Ts) = C(Tp), and
the cost of Ty is minimal. Unfortunately, finding a minimal T is
intractable for the following reasons. First, without the replayability
requirement, the problem can be reduced to an instance of the prize-
collecting traveling salesman problem (PCTSP), a well-known NP-
hard problem [3]. With the replayability requirement, a solution
found by solving the corresponding PCTSP problem may include
non-replayable traces. Therefore, we need to solve multiple PCTSP
problems until finding a replayable solution. Instead of solving the
problem of finding the global minimum, we developed a two-phase
heuristic algorithm, which we found to work effectively in practice.

2.2 Limitations of Existing Approaches

In any test-case reduction technique, we need to construct new
traces. Although the creation of a trace takes little time, we have to
ensure that the trace can be replayed. It is impossible to precisely de-
termine if a trace is replayable. In our technique, we check if a trace
is replayable by executing it few times. We found experimentally
that if a trace is non-replayable, it will fail to replay within eight
executions with very high probability. Faithfully executing a single
transition in a trace could take a few seconds because after inject-
ing an input or action, we need to wait until the screen stabilizes.
Therefore, executing a trace composed of several transitions could
take several minutes. Moreover, after executing each trace we need
to perform a clean restart, which takes several seconds. Therefore,
it is generally time consuming to check if a trace is replayable. This
is the key bottleneck faced by a GUI test suite reduction technique.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

< i Menu [<Jriles [% <[option
[= Option,
| m—) | Preview O
foo Caching
- Menu -
The main screen (s0) Pop-up menu (s1) Option screen (s2)
foo ' <
< | Files H < [Files : < [Files H
- foo —— foo |
foo foo picl pic2

In /foo folder (s0) In /foo/foo folder (s0) In /foo/foo/foo folder (s3)

Figure 1: A partial model of a file browser app.

Existing test minimization techniques, such as delta-
debugging [48] and genetic algorithms [27], will create and
check the replayability of many traces. Therefore, these techniques
cannot scale when the initial set of traces is large. But all existing
automated techniques for GUI test generation create large numbers
of traces. According to Clapp et al. [7]’s experimental results, their
variant of delta-debugging can take a few hours to several tens of
hours to handle traces composed of only 500 transitions. In our
experiments, we had to handle test cases having 10,000 transitions.
If we linearly extrapolate the timings reported by Clapp et al. to
10,000 transitions, delta-debugging could potentially take a month.
We seek a technique that can minimize a test suite in a day or less.

2.3 Our Observations

We observed that the set of traces generated by an automated
testing tool has many redundancies. Our technique for GUI test
suite reduction tries to remove these redundancies. We next describe
these redundancies using a series of examples.

2.3.1 Redundant Traces. Among the traces in a test suite, the
coverage provided by some traces is a subset of coverage provided
by the remaining traces. Such traces can be removed from the test
suite without decreasing the cumulative coverage. Our technique
finds such redundant traces and removes them from the test suite.

2.3.2 Redundant Loops. We also observed that there could be
redundancies within a trace, for example, if the trace contains a
redundant loop. A loop in a trace is a sub-trace of the trace that
begins and ends in the same abstract state. Traces generated by
automated testing tools tend to contain many loops, and some such
loops do not provide additional coverage over the coverage that can
be achieved by the trace without the loop and the remaining traces.
Such loops are redundant and can be removed from the trace if the
resulting trace can be replayed. We next illustrate such redundant
loops using a couple of examples.

All examples utilize the file browser app shown in Figure 1. When
the app starts, it shows the root directory (abstract state/screen sp).
In this initial state/screen, a user can invoke a pop-up menu (s1) by
touching the menu button on the screen (the button at the top-right
corner with three dot characters). Once the menu is visible, the user
can close the menu by touching the same button. Selecting an item
on the menu results in a completely different abstract state/screen
of the app. Pressing the Option button leads the app to the option
screen (s2). The app also allows the user to navigate the file system
(abstract state/screen sg and s3). Note we intentionally made the
directories /foo and /foo/foo to have the same look in order to
keep the example simple.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Example 2.1. (A redundant loop) Assume that the user touches
the menu button three times. This input sequence will open the
pop-up menu, close it, and then open it again. The user then selects
the first item (i.e. the Option button) of the menu. This action
will lead the app to the configuration screen. Assume there are no
event handlers associated with the menu open and close events.
The execution of the above action sequence will then generate
the following trace: sy Menw,0 s; Menu,0 5y Menu,0 5 Option.Co g,

where 0 is the empty set and C,, denotes the test coverage generated
when the app moves to the configuration screen. In this trace, the
sub-trace sy Menu,0 s; Menu,0 s, forms a loop since it begins and
ends with the same abstract state. The coverage of this loop only
contains the states s; and sp. The coverage of the loop is a subset
of the coverage of the rest of the trace (C, U {so, s1, s2}). Thus, the
loop does not add any extra coverage than what is already achieved
by the rest of the trace. This makes sense because the loop merely
opens and closes the pop-up menu. After removing the loop from
the trace, if the modified trace is replayable, we can replace the
original trace with the modified trace. Removing the loop gives us
the following shorter replayable trace: sy Menu,0 s Option.Co g,

Example 2.2. (A non-redundant loop) A loop is non-redundant
when the loop provides coverage that cannot be achieved
by the rest of the trace(s). Let us assume that the app now
has event handlers attached to the menu open and close
events. Re-executing the same sequence of actions from Ex-
ample 2.1 will generate the following slightly different trace:
so Menu.Cp s Menu,Ce 5y Menu.Cp) Option.Co 5, where Cp and
C. denote the coverage generated by executing the menu open
and close event handlers, respectively. In this modified trace, the
loop contributes the test coverage C, which cannot be achieved by
any other transition in the trace. Therefore, the loop should not be
removed from the trace.

Example 2.3. (Another non-redundant loop) A loop can be non-
redundant if the removal of the loop makes the trace non-replayable,
even if it does not achieve any new coverage. Note that if we use
the concrete state of the app instead of a screen abstraction, a trace
will be replayable if we remove a loop. However, due to abstraction,
the start and end states of a loop may not correspond to the same
concrete state. Therefore, the trace may not be replayable after the
removal of a loop. Let us illustrate this with an example. This time,
we are going to navigate the file system to reach the folder contain-
ing pictures (i.e. state s3). This task can be done by simply touching
the foo folder three times. The execution of the sequence of actions
will generate the following trace: so foo.Cry g f00.Cp1 g0 f00.Cpz g
where Cy; denotes the test coverage generated when opening a
folder only containing subfolders, and Cy, denotes the test cover-
age generated when opening a folder only containing files. The
trace has three loops (the first transition, the second transition, and
the sub-trace containing the first two transitions). The third loop
cannot be removed because removing it will reduce the coverage
of the trace. The first and seconds loops, however, look identical
and one may think that one of the two loops can be removed from
the trace. However, removing one of these two loops will make the
trace non-replayable because touching the foo folder twice leads
the app to the screen showing the contents of /foo/foo folder and
we will miss Cgy. The trace obtained after removing one of the

Wontae Choi, Koushik Sen, George Necula, and Wenyu Wang

loops is non-replayable because our coarse-grained state abstrac-
tion maps three distinct app states to so. However, if we do not use
the abstraction, we will have unbounded number of states, which
will make both automated test generation and test minimization
fail. This example shows that a loop is non-redundant if its removal
makes the trace non-replayable. Note that determining whether
removing a loop will have an impact on the rest of a trace can only
be determined by trying to replay the modified trace.

2.3.3 Redundant Trace Fragments. While analyzing traces in
automatically generated test suites of several apps, we observed
that many traces share common sub-traces. If we execute these
traces, the common sub-traces get executed multiple times (once
for each trace) but new coverage is only achieved when a common
sub-trace is executed for the first time. We can avoid redundant
execution of these common sub-traces if we can combine fragments
of traces in a manner that avoids repetitions of common sub-traces.
Combining fragments of traces will also result in longer traces. Such
longer traces will reduce the number of restarts, which are more
expensive operations than triggering an action. The next example
describes how common sub-traces contribute to redundancy.

Example 2.4. (Splicing three traces) Consider the following three
artificially-crafted traces:
.Ci g, b,C .Cs g4 d.C.
So ¢ C1 59 2 8y €03 g3 477
sp @C1 51 4:Cy e.Cs 5, 6.C3 s d.Cy 54
59 @C1 s1 b.C2 55 ¢.C3 175571 f,C6 g5
e ey T s
Note the first and second traces have two common sub-traces:
a,C ¢, C d,C. . .
s0.%C1 51 and sy ©C3 53 4.C4 54, Similarly, the first and third
traces have the common prefix s) €1 s; %C2 55 ¢:C5 53, By com-
bining fragments of the traces, we can create the following
trace: sy #C1_s; b:C2 55 €:C3 53 d,Cy e,C5 gy ¢.C3 [sgl fCs s5.
The spliced trace is constructed by appending sub-trace
e,C ¢, Cs i _
54 &Cs 55 ©C3 53 to the first trace, and then by appending the sub

trace s3 ££6_>35 to the resulting trace. The new trace gets rid of six
actions and two restart operations from the original traces. Note
that the spliced trace still contains two copies of the sub-trace
2 ﬁ)g, which we could not get rid of. If the spliced trace is re-
playable, it can replace the original traces in the test suite. The
running time of the spliced trace will be approximately half of the
original traces, while providing the same coverage. This example
shows that we can aggressively combine fragments from multiple
traces while getting rid of redundant fragments (including redun-
dant prefixes). However, in practice, we found that traces composed
of a large number of fragments from different traces tend to be
non-replayable. Therefore, in our technique we limit the number
of different trace fragments that we can combine to a small bound,
which is three in our implementation.

2.4 Our Approach

State abstraction. In our discussion so far, we assumed we have
a suitable state abstraction that enables us to cluster similar-looking
screens. The performance of our technique for test reduction de-
pends heavily on our choice of state abstraction. If we choose a
fine-grained abstraction, then our technique runs faster, but may
miss many opportunities for reduction. On the other hand, if we

DetReduce: Minimizing Android GUI Test Suites for Regression Testing

pick a coarse-grained abstraction, many of the traces that our tech-
nique constructs become non-replayable. Therefore, our technique
spends more time in checking replayability of various traces, but we
get a bigger reduction. We observed that a human tester can easily
identify screens that are similar by analyzing what is visible on the
screen. Ideally we needed an abstraction that judges that two app
screens to be the same if and only if a human tester finds the two
screens visually identical. After analyzing several apps, we picked
a state abstraction based on information from the GUI component
tree. The details of the abstraction are described in Section 4.

Removing redundancies. We propose a two-phase algorithm
to remove redundancies from a GUI test suite. The first phase re-
moves redundant traces and redundant loops greedily. It first re-
moves redundant traces by greedily selecting traces such that each
selected trace contributes new coverage to the coverage of the set of
already selected traces. The non-selected traces are then redundant
and are removed from the test suite. It then removes redundant
loops from each remaining trace. In order to remove redundant
loops in a trace, the algorithm creates the set of all traces obtained
from the trace by removing zero or more loops. It then selects
a trace from the set that does not decrease cumulative coverage,
lowers cost of the trace maximally, and is replayable. Such a trace
replaces the original trace in the test suite.

The second phase removes redundant trace fragments as much
as possible. For that it constructs a new set of traces by combining
fragments of the traces in the set computed by the first phase. When
splicing trace fragments, we found it useful to limit the number of
fragments in spliced trace to a small number (three in our case),
because a trace composed of many fragments tends to be non-
replayable in practice. Thus, the second phase of the algorithm first
creates the set of candidate traces composed of a bounded number
of trace fragments. It then constructs a new test suite by greedily
selecting traces from the set of candidate traces.

In both phases, whenever our algorithm generates a new trace, it
checks whether the trace is replayable or not by executing it a few
times. This prevents the algorithm from adding a non-replayable
trace to the resulting regression test suite. If the algorithm finds
a trace to be non-replayable, it identifies and saves the shortest
non-replayable prefix of the trace. In the future, if the algorithm
finds that a new trace starts with one of these saved prefixes, then
it can safely infer that the trace is non-replayable and discard it.
This optimization helps the algorithm aggressively discard some
non-replayable traces without executing them multiple times. We
describe the reduction algorithm formally in the next section.

3 ALGORITHM

3.1 Redundant Loop and Trace Elimination

In order to construct a minimal set of traces, we only retain the
traces from Ts whose cumulative coverage is same as the coverage
of Ts. Then we remove as many loops from the remaining traces
as possible while maintaining the same cumulative coverage and
the replayability of the traces. This results in a set of traces T
whose cost is much lower than the cost of Ts. During the removal
of loops, our algorithm discovers that certain trace prefixes are not
replayable. We speedup the loop elimination phase by pruning out

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

the traces whose prefix matches the non-replayable prefixes. We
next describe this algorithm formally.

Given a trace 7, we say that a sub-trace of 7 is a loop if it be-
gins and ends in the same state. For example, if in the trace r =

5091:C15192.C2 ... an,Cn s, there exists two states s; and s; such

that i # j and s; = sj, then the sub-trace £ = s; @i+1.Civ1 . ..
is a loop. If we remove the loop from 7, we get a shorter trace
ai,Ci 5;3+1:Cj+1 an.Cns,. A trace obtained af-
ter eliminating one or more loops from 7 may no longer be re-
playable. Thus, any time our algorithm removes a loop from a trace,
we need to check if the resulting trace is still replayable. Let L(7) be
the set of all traces obtained by removing different combinations of
zero or more loops from 7. Note that L(r) contains .

The pseudocode of the algorithm is shown in Algorithm 1. The
algorithm uses a function Replay which takes a trace 7 and returns
7 if the trace is replayable; otherwise, the function returns the
shortest prefix of 7 that is not replayable. Therefore, the check
7 = Replay(r) tell us whether 7 is replayable or not. In the first part
of the algorithm, we remove all redundant traces. To do so we create
an empty set T to store the non-redundant traces. The algorithm
goes over each trace 7 in Ts. If C(r) has some coverage that is not
already present in C(T), then 7 is not redundant and we add 7 to
T. After going over all traces in Ts, T will contain non-redundant
traces of Tg such that C(T) = C(Ts).

In the second part, the algorithm performs redundant loop elim-
ination. It maintains a set of reduced traces T, which is initialized
to the empty set. The algorithm goes over each trace 7 in T. It
then goes over each trace 7’ in L(7) (the set of all traces obtained
from 7 by removing zero or more loops) in the increasing order
of cost. If C(t") U C(T,) = C(r) U C(T;) and 7’ is replayable, i.e. if
7’ = Replay(r’), the algorithm adds 7’ to T, and stops processing
elements of L(7). This indicates that the algorithm has computed
a trace possibly shorter than 7. On the other hand, if ¢’ is not
replayable, then any trace in L(r) having Replay(z’) as a prefix
is removed from the set L(7) because all such traces will also be
non-replayable. This reduces the number the traces that we have
to process from the set L(z), and thus reduces the running time
of the algorithm. Note that during the processing of the traces in
L(zr), we will end up adding 7 to T, if none of the loops in 7 can
be eliminated without reducing coverage or without making the
resultant trace non-replayable.

aj,Cj sj
—_—

Tp = 5091:C1_ ...

Practical concerns. The algorithm relies on a robust implementa-
tion of Replay(r). However, in practice it is not easy to have a pre-
cise implementation of Replay(r) that will guarantee that Replay(t)
returns 7 if and only if 7 is replayable. Such an implementation
would require us to track the entire state of the app including the
state of any internet server it might be interacting with. Moreover,
if we make the implementation of Replay(r) too precise, in many
acceptable cases it will report that 7 is not replayable. In our tool,
we make a practical trade-off where we re-execute the trace 7 a
few times, which is ten in our experiments, and report the shortest
prefix of r that is non-replayable over all ten re-executions. If in all
the ten executions we find that 7 is replayable, Replay(r) returns 7.

The algorithm also needs to compute L(7), i.e. the set of traces
obtained from 7 by removing 0 or more loops. Our implementation
does not compute the set L(7) ahead of time. Rather it performs a

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Wontae Choi, Koushik Sen, George Necula, and Wenyu Wang

Algorithm 1 Eliminate redundant traces and loops

Algorithm 2 Bounded splicing

1: procedure ELIMINATEREDUNDANTTRACESANDLOOPS(Ts)

2 T—0 > Part 1: Eliminate redundant traces.
3 for 7 € T do > Loop over the input trace set.
4 if C() ¢ C(T) then

5: T—Tu{r}

6: T <0 > Part 2: Eliminate redundant loops.
7: for 7 € T do > Loop over the filtered trace set T.
8 T « L(7)

9: while Tp, # 0 do
10: 7’ « argmin |7|

TeTy,

11: T « Ty \ {7’}
12: if C(7") U C(T,) = C(7) U C(T,) then
13: if 7/ = Replay(z’) then
14: T, « T, U {t'}
15: break the inner loop
16: else
17: Tp < {7 € Tr | Replay(z’) is not a prefix of 7 }

18: return T,

depth-first traversal of the trace 7 to enumerate the traces in L(r)
one-by-one from the shortest to the longest one.

Finally, the result of the first phase of the algorithm will change
depending on the order of picking elements from Ts (line 3) and T
(line 7). Our implementation uses queues to store test cases, which
guarantees that test cases are always handled in first-come first-
serve order. We tried various other orderings, but we observed that
the results did not vary significantly.

3.2 Trace Splicing

While analyzing traces in the set T, i.e. the traces generated by
loop and trace elimination, we noticed traces often share common
sub- traces. Therefore, if we can combine traces in order to avoid
common sub-traces as much as possible, we generate longer traces.
This is good, since longer traces avoid expensive restarts and avoid
execution of redundant sub-traces. However, we also found that
the more traces we combine, the more likely we are to get non-
replayable traces. We found experimentally that if we combine
three or fewer trace fragments, we could still reap the rewards of
longer traces (avoiding restarts and redundant execution) while
creating replayable traces. Based on these observations, we devised
the second part of our minimization algorithm where we combine
fragments from different traces to create longer replayable traces.

A trace fragment is a contiguous portion of a trace obtained
by removing a prefix and a suffix of the trace. For example, if
T =3504:C15192.C2 ... an.Cn s, is a trace, then for any i, j € [0, n]

where i < j, s;8i+1:Cin1_. .. 9% s; is a fragment of the trace 7. A
set of trace fragments 71, 72, . . ., Ty can be combined to form the
trace 7172 . . . Ty if 71 begins with the state sg and for all i € [2, m],
the end state of 7;_1 is the same as the first state in ;. Given a set
of traces Ty, let Ty be the set of all traces obtained by combining at
most k trace fragments from the traces in T;.

The pseudocode of the algorithm is shown in Algorithm 2. The
algorithm first constructs the set Ty from the set T,. The algorithm
initializes the final set of minimized traces T, to the empty set. The
algorithm then does the following in a loop: it finds a trace 7 in T
such that 7 results in the maximal increase in coverage over the
coverage of Ty, i.e. 7 maximizes |C(z) \ C(Tp,)|. If no such trace is
found in Ty, the algorithm returns T,. Otherwise, if 7 is replayable,
it removes 7 from Ty and adds it to Tp,. If 7 is not replayable, then

1: procedure BouNDEDSPLICING(T, k)

2 Ty « {7 | 7 is a trace composed of at most k fragments of traces in T} }
3: T «— 0

4 while 37 € Ty .C(7) \ C(T,,) # 0 do

5 7 « argmax |C(7) \ C(T;,)|

TeTy
6 T « T \ {7}
7: if 7 = Replay(r) then
8: Tm « {7}
9 else
10: Ty < {7 € Ty | Replay(r)is not a prefix of 7 }

11: return T,,

all traces in Ty having Replay(r) as a prefix are removed from T.
This step speeds up the search for optimal 7 in future iterations.
The loop is then repeated.

The above algorithm terminates and computes a Ty, such that
C(Tyn) = C(T;). The algorithm terminates because in each iteration
we increase the coverage of Ty, and the coverage of Ty, cannot be
increased beyond the coverage of T, (which is same as the coverage
of T). The algorithm also ensures that C(T,;,) = C(Ty) because
for any finite k, Ty contains the traces in T,. Therefore, in the
worst case if none of the traces obtained by combining two or more
trace fragments from different traces are replayable, we will end up
adding all the traces in Ty to Tpy,. This ensures that C(Ty,) = C(Ty).

Computing Tj.. Algorithm 2 uses a declarative specification to
describe the trace set T.. We next describe an algorithm to compute
the set efficiently. For any set of traces, we can construct a labeled
transition system composed of the transitions of the traces in the
set. Formally, if T, is a set of traces, we construct a labeled transition
system O, = (S, s0,L, A, C, 5), where

e S is the set of all states in T,-, ® sg is the initial state of the app,
e L C N x N isasetof labels, e Ais the set of all actions in T,
e C is the set of coverage sets in T}, and

. . i»Ci
e § is a set of labeled transitions of the form s;_; a’—l'>si, where
a;,C;
S = {si—1 '—)’» si | drj €Ty st sj—1 9i-Ci sj is the i transition in Tj}.
1
Informally, an element of § is a transition from a trace in T},
augmented with a pair of indices denoting the trace to which the

transition belongs and the position of the transition in the trace.

Note that for any trace in T, there is a path in the labeled transition
system O, . Moreover, any path in Qr, represents a trace that could
be obtained by combining trace fragments from T,. We can check if
a path from Qr, belongs to Ty, by analyzing the labels of the path as
follows. Two consecutive transitions with labels (ji, i1) and (jz, i2)
in a path constitute a switch if either j; # ja or iy + 1 # iz. A path
in Qr, belongs to Tj. if the number of switches in the path is less
than k. The algorithm to construct Ty enumerates the paths in Q7,
using depth-first search and discards a path as soon as the number
of switches along the path reaches k. The algorithm terminates
since k is finite and the number of trace fragments is bounded.

4 IMPLEMENTATION

We implemented our test reduction algorithm in a prototype tool,
called DETREDUCE. DETREDUCE works for Android apps, but could
be implemented for other platforms supporting graphical user in-
terfaces. The tool is publicly available at https://github.com/wtchoi/
swifthand2.

https://github.com/wtchoi/swifthand2
https://github.com/wtchoi/swifthand2

DetReduce: Minimizing Android GUI Test Suites for Regression Testing

Screen abstraction. DETREDUCE uses a suitable screen abstrac-
tion to cluster app states. We found that the abstraction mechanism
used in SWIFTHAND [5] is appropriate to group screens that user
might find to be similar. We next briefly explain the screen abstrac-
tion mechanism. A screen abstraction is computed from a raw
GUI component tree collected from an app via UlAutomator. A
GUI component tree contains detailed information about a screen.
We observed that the following information are useful and often
sufficient to characterize a screen:

o Which GUI components are actionable? For example, Checkbox
and TextButton components are actionable in Android, while
TextBox and DecorationBar components are not.

o Which attribute values of actionable GUI components are visible
on the screen? For example, for a screen with a checkbox, one
could observe if the checkbox is checked or not.

We extract this information from a raw GUI component tree. The
abstraction is computed by first collecting a set of actionable GUI
components (i.e. the components with event handlers) from a GUI
component tree. Each collected component is augmented with the
access path to the component from the root in the GUI tree. Unnec-
essary attributes are then removed from each component.

5 EVALUATION
We aim to answer the following research questions.

RQ1: How effective is DETREDUCE in reducing test suites?
RQ2: Does DETREDUCE run in a reasonable amount of time?
RQ3: Does DETREDUCE preserve test coverage?

RQ4: Does DETREDUCE preserve fault-detection capability?
RQ5: How many re-executions are required to demonstrate the
replayability of a trace?

o RQ6: What will happen to the splicing algorithm if the number
of fragments in traces is increased beyond three?

To answer RQ1 to RQ5, we generated test suites using two test
generation algorithms (SwirTHAND [5] and Ranpowm [5]) on eigh-
teen benchmark apps and applied DETREDUCE to reduce them. To
answer RQ6, we analyzed the relationship between the likelihood
of finding a replayable trace and the bound on the number of frag-
ments in traces using four relatively complicated apps. We used
five smartphones (Motorola XT1565) to run benchmark apps.

5.1 Experimental Setup

5.1.1 Benchmark Apps. We applied DETREDUCE to eighteen free
apps downloaded from the Google Play store [11] and F-Droid [39].
Table 1 lists these apps along with their package name, the type of
app, and the number of branches in the app (which offers a rough
estimate of the size of the app.) Since the apps were downloaded
directly from app stores, we have access to only their bytecode.
Thirteen apps were used for experimental evaluation in previous re-
search projects [6, 9, 49]; other apps, which we mark with asterisks,
are newly selected. We excluded apps for which SwirTHAND and
RANDOM saturate the test coverage in less than an hour. Note that
adding such apps would only improve experiment results because
most of traces in test suites for such apps are redundant.

5.1.2 Generating a Replayable Test Suite to be Used for Minimiza-
tion. To generate test suites to be used as inputs to DETREDUCE, we

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 1: Benchmark Apps

app package name type #br
acar com.zonewalker.acar car manager 20380
amemo liberty.android.fantastischmemo | flashcard 6394
amoney” | com.kpmoney.android finance 28141
astrid org.tasks task manager 16844
cnote® dictapps.notepad.color.note note 14524
dmoney | com.bottleworks.dailymoney finance 5099
“emobile” | ‘orgiepstudios.epmobile” "] fitness tracker [3201
explore com.speedsoftware.explorer file system 54302
mileage com.evancharlton.mileage car manager 7728
mnote jp-grjava_conf.hatalab.mnv text editor 1959
monefy com.monefy.app.lite finance 22615
sanity cri.sanity device manager | 4610
“Hppy T metmandariafippytipper Gip calealator | 5243
todo* com.splendapps.splendo task manager 11858
ttable* com.gabrielittner.timetable scheduler 11858
vle* org.videolan.vlc media player 14410
whohas de.freewarepoint.whohasmystuff | inventory 369
xmp org.helllabs.android.xmp media player 5855

first collected execution traces by running an implementation of the
SwirTHAND [5] and Ranpowm [5] algorithms. We ran each for eight
hours, then checked whether the generated traces are replayable by
re-executing each trace ten times. For each non-replayable trace, we
identified a non-empty replayable prefix of the trace and retained
the prefix rather than throwing the entire trace away.

An app can generate a non-replayable trace for several reasons:
a) the app has external dependency (e.g., it receives messages from
the outside world, depends on a timer, or reads and writes to the
file system), or b) the app has inherent non-determinism due to the
use of a random number generator or multi-threading. We removed
dependency on the outside world by resetting the contents of the
SD card and the app data every time we restart. Nonetheless, it is
impossible to eliminate all sources of non-determinism. Therefore,
we replayed each trace generated by the SwirTHAND and RANDOM
algorithms ten times to remove the non-replayable suffixes of traces.
We determined experimentally that eight re-executions is sufficient
to detect most of non-replayable traces for the benchmark apps.

5.1.3 Why we did not use Monkey to generate initial test suite?
Monkey [12] is a fuzz testing tool for Android apps. Monkey is
widely-used to automatically find bugs in real-world Android apps.
We initially attempted to use Monkey to generate inputs for DETRE-
DUCE; however, we found that Monkey is not capable of generating
replayable traces. We now describe our experience with Monkey.

Monkey is a simple black box tool that reports only the sequence
of actions it used to drive a testing session. To get a trace would re-
quire non-trivial modifications to Monkey. Before jumping into this
effort, we performed an experiment to determine whether Monkey
is even capable of generating replayable traces—if Monkey cannot
generate replayable traces, there is no point in the modification.

In this experiment, we used a script to generate traces with
partial information from Monkey and checked if those traces could
be replayed. The script injects user actions at the rate of m actions
per second, collecting branch coverage and screen abstraction after
injecting every n actions. The script picks the value of m from the
set {1, 2,5, 10, 20, 100} and value of n from {2, 10, 50, 100, 200}. For
each pair of values for m and n, the script runs Monkey until it
injects 2000 actions. By combining the sequence of actions reported
by Monkey with the collected coverage information, the script
can generate traces that have coverage and screen information

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

after every n actions (instead of having the information after every
event.) We call such traces partial traces.

Using this script, we collected three partial traces for each pos-
sible value of m and n using the same random seed and compared
the partial traces. If the partial traces do not match, this indicates
that Monkey cannot generate a replayable trace. We performed the
experiment using ten apps with three different random seeds.

The results of this experiment showed that Monkey passes the
test for four apps when n = 2 and m = 2. For the other six apps,
Monkey fails the test even when injecting one action per second. At
this speed Monkey becomes useless in practice because its power
comes primarily from its ability to inject many actions quickly. It
will take too long to generate a sufficiently good test suite using
Monkey at this speed. Therefore, we have concluded that using
Monkey is not viable for generating initial replayable test suite.

Why is Monkey testing highly non-deterministic? We found that
Monkey injects actions asynchronously—that is, Monkey injects
an action without checking whether the previously injected action
has been fully handled. This allows Monkey to inject an order
of magnitude more actions than testing tools that synchronously
inject actions, but this also makes Monkey highly non-deterministic.
For example, we noticed that if actions are injected while the app
is unresponsive, those actions are dropped. Because the period of
unresponsiveness varies from execution to execution, the number
of dropped actions varies across executions.

5.2 Evaluation of DETREDUCE

Table 2 and Table 3 show the results of applying DETREDUCE to the
test suites generated by the SwirTHAND and RANDoM algorithms,
respectively. Each table has four parts. The first part shows the
following information about the test suites to be minimized: total
branch coverage (#br.), total screen coverage (#s.), total number of
transitions (#act.), and total number of traces (#tr.) of each initial
test suite. The second and third parts of the table show information
about the test suites generated after running the first and second
phases, respectively, of DETREDUCE. The fourth part shows im-
portant statistics summarizing the experiment results: the running
time of each phase of the algorithm (t,1 and #,), the execution time
(tr) of the resulting reduced regression test suite, and the ratio of
the execution time of the resulting regression suite to the execution
time of the original test suite in percentage (t;/t). We make the
following observations from the data shown in the tables.

e RQ1: The execution time of the reduced test suites (¢,) is sev-
eral orders of magnitude shorter than that of the original test
suites (8 hours). This shows that DETREDUCE is highly effective
in minimizing the test suites for the benchmark apps. Regarding
the sizes of test suites, phase 1 of DETREDUCE removes 91.27%
of transitions (median) and 90.5% of restarts (median). Phase 2
of DETREDUCE further removes 33.07% of transitions and 31.81%
of restarts from the test suites obtained after Phase 1. These two
phases of DETREDUCE cumulatively remove 93.84% of transitions
and 93.52% of restarts. We also found that the rate of reduction
is higher for test suites generated from Ranpom. This is because
these test suites have lower test coverage and more redundancies.

o RQ2: The running time of the algorithm is within a factor of 6x
of the execution time of the original test suites generated by the

Wontae Choi, Koushik Sen, George Necula, and Wenyu Wang

test generation algorithms. More than half of the running time
was spent in detecting and eliminating loops in phase 1 (note that
DETREDUCE spends no time removing redundant traces because
such traces do not require any execution). The time spent in
phase 1 is reasonable because the phase searches for a minimized
test suite while eliminating redundant loops from each trace.
Note that these experiments employed a conservative parameter
(ten) for the number of re-executions to perform to check trace
replayability, and the running cost of DETREDUCE can be further
reduced by setting this parameter to eight.

e RQ3: Despite using an approximate method for checking if a
trace is replayable, the minimized test suites nonetheless cover
the most of the original branch and screen coverage. DETREDUCE
fails to provide 100% coverage for amoney, explorer, ttable, and
vlc. We manually analyzed the reasons for the missing branches
and screens, and determined that non-replayable traces were not
fully removed while generating the original test suites before
phase 1 of DETREDUCE.

e RQ4: In order to check how DETREDUCE affects the fault-
detection capability of test suites, we collected exceptions raised
while executing each test suite. We identified seven distinct ex-
ceptions based on their stacktrace. All survived after applying
DeTREDUCE. Note that DETREDUCE does not consider exceptions
to be part of the test coverage it tries to preserve.

® RQ5: We measured how many re-executions were required to
identify each non-replayable trace created during our experi-
ments. The following table summarizes the results.

T n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
18043 10956 120 86 55 35 27 14 3 0 0

The first column (T) shows the total number of traces created
during the experiments, and the remaining columns show the
number of non-replayable traces that required n re-executions
for detection. The results show that all non-replayable traces
were detected within the first eight iterations. The results also
show that 37.5% of traces attempted during the experiments were
replayable traces, suggesting that DETREDUCE is good at selecting
candidate traces in our benchmarks.

5.3 Splicing and the Number of Fragments in
Traces

RQ6: To understand the effect of bounding the number of trace
fragments in phase 2 of our algorithm, we measured the relationship
between the bound and the likelihood of finding a replayable trace,
and the average number of trace fragments in a trace generated by
splicing. For these measurements, we used four relatively complex
benchmark apps.

5.3.1 Bounding the Number of Fragments and the Replayability
of Traces. We measured the correlation between the bound on the
number of fragments and the possibility of finding a replayable
trace using ten different bounds on k (1 < k < 10). For each k,
we constructed 200 random traces by combining k trace fragments
from the test suite after phase 1. Furthermore, we restricted each
trace to contain only 20 transitions. In order to construct the traces,
we first collected at most 20,000 traces satisfying the requirement
using breadth-first search of the transition system Qr, (described in
section 3.2). Note that the paths of Qr, consist of traces that can be

DetReduce: Minimizing Android GUI Test Suites for Regression Testing

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 2: Test suite reduction result using DETREDUCE on SWIFTHAND traces

initial test suites phase 1 phase 2 running time in hours
app Fbr #Fsc Fact Fu| #br #sc_ Fact x| #br Asc Fact F| G by & G
acar 4427 171 13478 822 4427 171 1808 170| 4427 171 1283 121| 11.86 831 090 11.22%
amemo | 2955 114 13604 835| 2955 114 1380 135| 2955 114 1030 101| 11 803 0.72 9.06%
amoney | 4481 159 13213 779| 4481 159 2793 269| 4462 157 1595 146[1127 1207 1.14 14.21%
astrid | 6201 170 10532 680 6201 170 1828 188| 6201 170 1168 120 1595 9.20 1.07 13.32%
cnote | 5089 102 13584 157| 5089 102 1515 156| 5089 102 1083 117 123 7.84 1.09 13.61%
dmoney| 2387 47 13511 785| 2387 47 728 74| 2387 47 574 63| 59 353 043 545%
emobile| 1554 214 13261 782| 1554 214 1593 179| 1554 214 1224 137| 102 849 0.95 11.89%
explore | 6647 105 7559 703| 6647 105 1458 153| 6596 103 867 92| 1935 1057 1.07 13.42%
mileage | 1766 81 13570 809 1766 81 507 61| 1766 81 402 46| 443 4.14 031 3.84%
mnote | 889 76 13697 1003| 889 76 988 96| 889 76 718 71| 9.14 759 047 592%
monefy | 4966 62 13703 806| 4966 62 2001 121| 4966 62 1331 85| 11.32 10.98 0.80 9.98%
sanity | 978 186 12735 764| 978 186 1639 142| 978 186 1045 94| 13.59 10.39 0.76 9.54%
tippy 712 15 14200 819 712 15 294 32 712 15 198 23| 1328 7.18 0.15 1.83%
todo 1415 58 10164 641| 1415 58 735 82| 1415 58 520 57 596 3.96 0.50 6.38%
ttable | 2651 125 13028 1516 2651 125 1385 152| 2251 125 891 97 971 1025 053 6.36%
vie 2341 60 11978 770| 2341 60 719 76| 2279 59 440 45| 589 3.83 035 4.41%
whohas [230 15 12857 757 230 15 179 20| 230 15 119 12| 126 114 009 1.14%
xmp 2079 50 11326 761| 2079 50 617 64| 2079 50 342 34| 3.98 227 028 3.53%
median | 2333 915 13237 780.5| 2333 915 1384 128| 2333 915 879 885| 9.96 7.2 063 7.84%
Table 3: Test reduction result using DETREDUCE on RANDOM Table 5: The frequency of traces composed of k fragments.
traces. Coverage results for DETREDUCE are omitted, since . #traces composed of k fragments (out of 1000 samples per app)
DETREDUCE only missed 0.8% of branches and 4 screens for °p kel k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 kelo+
acar 25 14 22 28 37 24 42 48 73 689
amoney. astrid | 29 3 15 16 10 13 23 38 70 783
initial test suites phase 1 | phase 2 running time in hours cnote 12 4 11 2 7 8 10 6 13 927
app Fbr #sc Fact Fir| Fact Fu| fact F| G Gy & LR emobile | 25 16 20 23 24 59 33 59 88 685
acar 2897 102 6990 2162| 943 96| 719 70| 6.07 485 054 6.70%
amemo | 2663 99 11680 1358| 1072 108| 768 74| 10.06 5.4 048 6.03% constructed from Qr, contain a small number of fragments. Our
amoney | 3285 110 10290 1406 921 88| 671 66| 681 461 042 532% hypothesis was that, without a proper bound, a significant num-
astrid | 4797 112 7297 954| 1095 115| 760 79| 17.01 638 0.66 8.22% ;
cnote | 5000 88 12909 1140| 1252 123| 885 82| 11.95 9.26 056 7.00% ber of traces generated from Qr, would contain many trace frag-
dmoney| 2057 46 7202 577| 567 59| 435 45| 547 295 044 5.44% ments, making them non-replayable with high probability. There-
emobile | 1359 195 10500 847 1276 153 978 121] 10.99 7.07 0.90 11.20% fore, phase 2 of DETREDUCE would spend considerable amount of
explore | 6145 76 5960 747 913 86| 604 55| 9.54 951 070 8.75% . . .
mileage | 1722 80 7013 670| 530 60| 344 44| 474 319 039 484% time checking the replayability of non-replayable traces. In order
mnote 909 65 9559 1087 824 82| 636 59| 832 4.57 048 5.94% to validate this hypothesis, we constructed 1000 traces composed
monefy | 3549 36 11435 970| 1449 78| 622 37| 1057 242 038 4.78% e .
sanity | 701 110 8778 1350 706 66| 433 42| 464 3.84 031 3.93% of at most 20 transitions by sampling rar?dom paths from Qr, , and
tippy 686 15 10999 1057| 269 28| 174 19| 1.63 1.14 013 1.68% checked the number of trace fragments in each sampled trace.
todo 1312 39 7873 975 557 76(317 38) 658 557 057 7.12% Table 5 shows the results. The first column shows the name of
ttable | 2589 100 9242 1125| 1034 114| 730 71| 17.56 14.48 032 3.96%
vie 2001 44 7706 922| 528 62| 316 33| 553 373 032 4.00% the app and the rest of the columns shows the number of traces com-
whohas | 206 16 7879 1179| 141 19| 81 11| 12 075 008 0.98% posed of k fragments for each k between 1 to 10. The results show
Xmp 1798 45 9734 844[566 48[318 27) 525 251 026 3.24% that there are many more traces composed of a large number of
median | 2029 78 9269 1016] 868 80| 613 50| 629 459 043 5.38%
fragments than traces composed of fewer fragments. Consequently,
if we perform splicing without bounding the number of fragments,
Table 4: The frequency of replayable traces. we are more likely to get traces composed of a large number of
N Freplayable traces (out of 200 samples per app and K) fragments. The results of the previous experiment (Section 5.3.1)
PP k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 suggest that such traces are likely to be non-replayable. This vali-
acar 195 159 119 96 94 80 70 47 54 47 dates our hypothesis that phase 2 of DETREDUCE will not scale if
astrid | 189 108 93 64 51 41 22 16 19 14 A
cnote 186 117 77 73 53 31 22 31 16 11 the number of trace fragments is unbounded.
emobile | 199 169 139 116 96 93 62 41 50 57

constructed via splicing. We then sampled 200 traces from the set of
20,000 traces. Finally, we checked how many of the sampled traces
are replayable by executing each trace ten times. Table 4 shows
the results. The first column shows the name of the app and the
rest of the columns show the number of replayable traces for each
k. Our hypothesis was that increasing the number of fragments
would decrease the possibility of finding replayable traces, and the
results confirm this hypothesis for the four apps.

5.3.2 Number of Fragments in Traces Generated by Splicing.
Even if traces containing many trace fragments tend to be non-
replayable, we would not need to bound the number of fragments
during phase 2 of DETREDUCE if most of the traces that can be

5.4 Threats to Validity

We used a limited number of benchmark apps to evaluate DETRE-
DUCE, s0 it is possible that our results to not generalize. To address
this issue, we carefully selected the benchmark apps, and the details
of the selection process are explained in Section 5.1.1.

The selection of the test generation algorithms could potentially
bias the evaluation results. Specifically, the results obtained from
a single algorithm cannot determine whether the results can be
generalized to the other test generation algorithms. To address this
issue, we used both SwirTHAND and RaNDoOM algorithm. We could
not use Monkey because it cannot generate replayable traces, as
explained in Section 5.1.3. The results obtained using RANDOM show

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

that DETREDUCE is not an artifact that only works with SWIFTHAND.
However, the results are still not strong enough to decisively con-
clude that DETREDUCE can effectively reduce test suites generated
from an arbitrary test generation tool.

Finally, in the evaluation, we checked whether the exceptions
raised by the original test suites are also raised by the test suites
reduced by DETREDUCE. However, this is a limited evaluation. A
more robust evaluation would involve injecting artificial faults into
the benchmark apps and measuring the number of injected faults
detected before and after the test suite reduction. We did not take
this approach because of the difficulty of injecting faults into the
binary of an Android app.

6 RELATED WORK

GUI test minimization. ND3MIN [7] is the most closely related
work to our research. It is a GUI test minimization algorithm for An-
droid apps, based on delta-debugging [48]. We compare ND3MIN
and DETREDUCE in three aspects: a) They have different goals:
ND3MIN aims to minimize each test case in isolation while keep-
ing the final activity. DETREDUCE tries to minimize a whole test
suite while keeping the branch and screen coverage of the test
suite. b) Handling non-determinism: ND3MIN aims to tolerate non-
deterministic behaviors occurring during the execution of an app.
On the contrary, DETREDUCE is designed to actively detect and avoid
non-deterministic behaviors during the process of minimization. c)
Running time: ND3MIN is a variation of delta-debugging, whose
worst case time complexity is O(n?) where n is the size of input test
case [48]. This could make the algorithm fail to scale since the cost
of performing each test run is expensive in GUI testing. ND3MIN
uses up to 50 hours to minimize a test case composed of 500 actions.
DETREDUCE is capable of handling a test suite composed of more
than 10,000 transitions in less than 30 hours. We could not perform
an empirical comparison because the implementation of ND3MIN
was not available to us.

Hammoudi et al. [17] also proposed a delta-debugging based test
minimization algorithm. Unlike ND3MIN and DETREDUCE, their
work aims to minimize manually written test cases for web ap-
plications. Their results showed that the execution time of the
minimized test cases are on average 22% shorter than that of the
original test cases. This shows that there is room to minimize even
manually written test cases. Since they used relatively small test
cases composed of less than 150 actions, it is hard to say if their
delta-debugging approach would scale on a large GUI test case.

Test minimization in general. Test suite reduction techniques [18,
19, 21, 22, 24, 30, 41, 42, 46, 50] automatically reduce the size of a
test suite without losing the coverage of the test suite. Unlike our
work, these techniques assume that test suites consist of already
compacted test cases; these techniques do not focus on reducing the
size of each test case. They only focus on selecting a small set of test
cases from a test suite. The first part of the first phase of DETREDUCE,
where we remove redundant traces, can be seen as a test suite
reduction technique. In the context of GUI testing, McMaster and
Memon [30] proposed call-stack history as a metric for reducing
GUI test suites. We might be able to reduce more redundant traces
by adopting this technique. However, it is possible that removing

Wontae Choi, Koushik Sen, George Necula, and Wenyu Wang

too many traces at the first phase of DETREDUCE might negatively
affect the capability of the second phase of DETREDUCE.

Delta-debugging [47, 48] is probably the most widely-known test
minimization technique. We found it difficult to use delta-debugging
to minimize a large GUI test suite because of the cost of running
the test suite. It is often possible to accelerate delta-debugging by
exploiting domain specific knowledge. For example, hierarchical
delta-debugging (HDD) [35] works on structured texts, such as
XML, by first performing delta-debugging on top-level structures,
then gradually moving into substructures. This allows HDD to
significantly reduce the time required to reduce structured texts
compared to the original delta-debugging. A similar idea has been
used in DEMi [40] to minimize test cases for a distributed system.
However, we have yet to find a way to make delta-debugging scale
better on GUI test suites.

Prior to our work, Groce et al. [15] proposed cause-reduction, a
test reduction technique combining delta-debugging and greedy
test-case selection. There are two notable differences between cause-
reduction and DETREDUCE. First, cause-reduction is comparable to
phase 1 of DETREDUCE, and it does not have a component corre-
sponding to phase 2. Second, cause-reduction uses delta-debugging
as a component. On the contrary, DETREDUCE uses highly domain-
specific components such as loop-elimination and splicing.

Automated Android GUI testing techniques. In this paper we used
SwIFTHAND [5] to generate test suites. One can use any automated
GUI testing technique, such as A3E [2], Dynodroid [26], AppsPlay-
ground [38], or MobiGUITAR [1], to generate initial test suites.
One may argue that test minimization might not be necessary in
the future if automated testing techniques continue to improve.
Automated GUI testing techniques are indeed becoming better in
maximizing test coverage and finding bugs in a limited period of
time [8, 28]. However, recent studies [17, 46] suggest that even
test cases and test suites created by human experts need to be
compacted. Therefore, we predict that GUI test suite minimization
techniques will remain useful, even though automated GUI testing
techniques continue to improve.

A recent survey [6] compares the performance of several auto-
mated testing tools for Android apps. Their results suggest that
Monkey outperforms other more sophisticated tools in terms of
maximizing coverage in a limited period of time. However, we ob-
served that it is difficult to replay test cases generated by Monkey.
Even if Monkey finds a bug, it might be difficult to reproduce the bug
or minimize the sequence of actions obtained from Monkey [43].

GUI test scripts [13, 14, 39] and record-and-replay tools [10,
14, 16, 20, 36] are means to generate reusable test cases reflecting
human knowledge. These tools complement our approach. One can
use these tools either to generate a set of test cases to be minimized,
or to add more test cases to already minimized test suites.

ACKNOWLEDGMENTS

This research is supported in part by NSF grants CCF-1409872 and
CCF-1423645.

REFERENCES

[1] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M Memon. 2015. MobiGUITAR: Automated model-based testing of
mobile apps. IEEE Software 32, 5 (2015), 53-59.

DetReduce: Minimizing Android GUI Test Suites for Regression Testing

(2]

[3

(4]

[10]

[11

[12]

[13

[14]

[15]

=
&

[17]

[18]

[19]

[20

[21

[22

[23]

[24

[25]

[26

Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of Android apps. In ACM SIGPLAN Notices, Vol. 48. ACM,
641-660.

Egon Balas. 1989. The prize collecting traveling salesman problem. Networks 19,
6 (1989), 621-636.

Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen,
Jaeyeon Jung, Suman Nath, Rui Wang, and David Wetherall. 2014. Brahmas-
tra: Driving Apps to Test the Security of Third-Party Components.. In USENIX
Security. 1021-1036.

Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI testing of
Android apps with minimal restart and approximate learning. In ACM SIGPLAN
Notices, Vol. 48. ACM, 623-640.

Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated test input generation for Android: Are we there yet?(e). In Automated
Software Engineering (ASE), 2015 30th IEEE/ACM International Conference on. IEEE,
429-440.

Lazaro Clapp, Osbert Bastani, Saswat Anand, and Alex Aiken. 2016. Minimizing
GUI event traces. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 422-434.

Markus Ermuth and Michael Pradel. 2016. Monkey see, monkey do: effective
generation of GUI tests with inferred macro events. In Proceedings of the 25th
International Symposium on Software Testing and Analysis. ACM, 82-93.

Mattia Fazzini, Eduardo Noronha de A Freitas, Shauvik Roy Choudhary, and
Alessandro Orso. 2016. From Manual Android Tests to Automated and Platform
Independent Test Scripts. arXiv preprint arXiv:1608.03624 (2016).

Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. 2013. Reran:
Timing-and touch-sensitive record and replay for Android. In Software Engineer-
ing (ICSE), 2013 35th International Conference on. IEEE, 72-81.

Google Inc. 2008. Google Play. https://play.google.com/store?hl=en. (2008).
Accessed: 2017-04-11.

Google Inc. 2008. Ul/Application Exerciser Monkey. https://developer.android.
com/studio/test/monkey.html. (2008). Accessed: 2017-04-11.

Google Inc. 2010. Monkeyrunner. https://developer.android.com/studio/test/
monkeyrunner/index.html. (2010). Accessed: 2017-04-11.

Google Inc. 2011. Espresso. https://google.github.io/
android-testing-support-library/docs/espresso/. (2011). Accessed: 2017-
04-11.

Alex Groce, Mohammed Amin Alipour, Chaogiang Zhang, Yang Chen, and John
Regehr. 2014. Cause reduction for quick testing. In Software Testing, Verification
and Validation (ICST), 2014 IEEE Seventh International Conference on. IEEE, 243-
252.

Matthew Halpern, Yuhao Zhu, Ramesh Peri, and Vijay Janapa Reddi. 2015. Mosaic:
cross-platform user-interaction record and replay for the fragmented Android
ecosystem. In Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium on. IEEE, 215-224.

Mouna Hammoudi, Brian Burg, Gigon Bae, and Gregg Rothermel. 2015. On the
use of delta debugging to reduce recordings and facilitate debugging of web
applications. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. ACM, 333-344.

Dan Hao, Lu Zhang, Xingxia Wu, Hong Mei, and Gregg Rothermel. 2012. On-
demand test suite reduction. In Proceedings of the 34th International Conference
on Software Engineering. IEEE Press, 738-748.

Hwa-You Hsu and Alessandro Orso. 2009. MINTS: A general framework and tool
for supporting test-suite minimization. In Software Engineering, 2009. ICSE 2009.
IEEE 31st International Conference on. IEEE, 419-429.

Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. 2015. Versatile yet lightweight
record-and-replay for Android. In ACM SIGPLAN Notices. ACM.

Dennis Jeffrey and Neelam Gupta. 2005. Test suite reduction with selective
redundancy. In Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE
International Conference on. IEEE, 549-558.

Dennis Jeffrey and Neelam Gupta. 2007. Improving fault detection capability by
selectively retaining test cases during test suite reduction. IEEE Transactions on
software Engineering 33, 2 (2007).

Casper S Jensen, Mukul R Prasad, and Anders Meoller. 2013. Automated testing
with targeted event sequence generation. In Proceedings of the 2013 International
Symposium on Software Testing and Analysis. ACM, 67-77.

James A Jones and Mary Jean Harrold. 2003. Test-suite reduction and prioriti-
zation for modified condition/decision coverage. IEEE Transactions on software
Engineering 29, 3 (2003), 195-209.

Chieh-Jan Mike Liang, Nicholas D Lane, Niels Brouwers, Li Zhang, Borje F
Karlsson, Hao Liu, Yan Liu, Jun Tang, Xiang Shan, Ranveer Chandra, and others.
2014. Caiipa: Automated large-scale mobile app testing through contextual
fuzzing. In Proceedings of the 20th annual international conference on Mobile
computing and networking. ACM, 519-530.

Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input
generation system for Android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 224-234.

[27

[28

[29

[33

[34

@
2

[36

[37

[38

[39

=
2

[41

[42

[43

[44

[45

[46

N
)

[48

[49

[50]

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. Evodroid: Segmented
evolutionary testing of Android apps. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 599-609.
Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated test-
ing for Android applications. In Proceedings of the 25th International Symposium
on Software Testing and Analysis. ACM, 94-105.

Leonardo Mariani, Mauro Pezze, Oliviero Riganelli, and Mauro Santoro. 2012.
Autoblacktest: Automatic black-box testing of interactive applications. In Software
Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Conference
on. IEEE, 81-90.

Scott McMaster and Atif Memon. 2008. Call-stack coverage for GUI test suite
reduction. IEEE Transactions on Software Engineering 34, 1 (2008), 99-115.

Ali Mesbah, Arie Van Deursen, and Stefan Lenselink. 2012. Crawling Ajax-based
web applications through dynamic analysis of user interface state changes. ACM
Transactions on the Web (TWEB) 6, 1 (2012), 3.

Amin Milani Fard, Mehdi Mirzaaghaei, and Ali Mesbah. 2014. Leveraging existing
tests in automated test generation for web applications. In Proceedings of the
29th ACM/IEEE international conference on Automated software engineering. ACM,
67-78.

Nariman Mirzaei, Hamid Bagheri, Riyadh Mahmood, and Sam Malek. 2015. Sig-
droid: Automated system input generation for Android applications. In Software
Reliability Engineering (ISSRE), 2015 IEEE 26th International Symposium on. IEEE.
Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi, and Sam Malek.
2016. Reducing combinatorics in GUI testing of Android applications. In Proceed-
ings of the 38th International Conference on Software Engineering. ACM.
Ghassan Misherghi and Zhendong Su. 2006. HDD: hierarchical delta debugging.
In Proceedings of the 28th international conference on Software engineering. ACM,
142-151.

Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li. 2016. Mobiplay: A remote
execution based record-and-replay tool for mobile applications. In Proceedings of
the 38th International Conference on Software Engineering. ACM, 571-582.
Siegfried Rasthofer, Steven Arzt, Stefan Triller, and Michael Pradel. 2017. Making
Malory Behave Maliciously: Targeted Fuzzing of Android Execution Environ-
ments. In Proceedings of the 39th International Conference on So ware Engineering.
ACM. To appear.

Vaibhav Rastogi, Yan Chen, and William Enck. 2013. AppsPlayground: automatic
security analysis of smartphone applications. In Proceedings of the third ACM
conference on Data and application security and privacy. ACM, 209-220.

Renas Reda. 2010. Robotium, User scenario testing for Android. https://github.
com/RobotiumTech/robotium. (2010). Accessed: 2017-04-11.

Colin Scott, Andreas Wundsam, Barath Raghavan, Aurojit Panda, Andrew Or,
Jefferson Lai, Eugene Huang, Zhi Liu, Ahmed El-Hassany, Sam Whitlock, and
others. 2015. Troubleshooting blackbox SDN control software with minimal
causal sequences. ACM SIGCOMM Computer Communication Review 44, 4 (2015),
395-406.

August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov.
2014. Balancing trade-offs in test-suite reduction. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
246-256.

August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing and
combining test-suite reduction and regression test selection. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering. ACM, 237-247.
StackOverFlow. 2014. Stack Overflow: what would be
the base optimal throttle and seed for an application us-
ing monkey test? http://stackoverflow.com/questions/9778881/

what-would-be-the-base- optimal-throttle-and- seed-for- an-application- using-monkey.

(2014). Accessed: 2017-04-14.

Shenggian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. 2015.
Static control-flow analysis of user-driven callbacks in Android applications. In
Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference
on, Vol. 1. IEEE, 89-99.

Wei Yang, Mukul R Prasad, and Tao Xie. 2013. A grey-box approach for automated
GUI-model generation of mobile applications. In International Conference on
Fundamental Approaches to Software Engineering. Springer, 250-265.

Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization: a survey. Software Testing, Verification and Reliability 22, 2
(2012), 67-120.

Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?.
In Software Engineeringa ATESEC/FSEGAZ99. Springer, 253-267.

Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering 28, 2 (2002), 183-200.

Hailong Zhang, Haowei Wu, and Atanas Rountev. 2016. Automated test gener-
ation for detection of leaks in Android applications. In Automation of Software
Test (AST), 2016 IEEE/ACM 11th International Workshop in. IEEE, 64-70.

Hao Zhong, Lu Zhang, and Hong Mei. 2008. An experimental study of four
typical test suite reduction techniques. Information and Software Technology 50,
6 (2008), 534-546.

https://play.google.com/store?hl=en
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/test/monkeyrunner/index.html
https://google.github.io/android-testing-support-library/docs/espresso/
https://google.github.io/android-testing-support-library/docs/espresso/
https://github.com/RobotiumTech/robotium
https://github.com/RobotiumTech/robotium
http://stackoverflow.com/questions/9778881/what-would-be-the-base-optimal-throttle-and-seed-for-an-application-using-monkey
http://stackoverflow.com/questions/9778881/what-would-be-the-base-optimal-throttle-and-seed-for-an-application-using-monkey

	Abstract
	1 Introduction
	2 Overview
	2.1 Definitions and Problem Statement
	2.2 Limitations of Existing Approaches
	2.3 Our Observations
	2.4 Our Approach

	3 Algorithm
	3.1 Redundant Loop and Trace Elimination
	3.2 Trace Splicing

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Evaluation of DetReduce
	5.3 Splicing and the Number of Fragments in Traces
	5.4 Threats to Validity

	6 Related Work
	Acknowledgments
	References

