
Detecting Failures of Neural Machine Translation in
the Absence of Reference Translations

Wenyu Wang‡∗, Wujie Zheng†∗, Dian Liu†, Changrong Zhang†, Qinsong Zeng†,
Yuetang Deng†, Wei Yang§, Pinjia He¶, Tao Xie‡

† Tencent Inc., China
‡ University of Illinois at Urbana-Champaign, USA

§ University of Texas at Dallas, USA
¶ ETH Zurich, Switzerland

Abstract—Despite getting widely adopted recently, a Neural
Machine Translation (NMT) system is often found to produce
translation failures in the outputs. Developers have been rely-
ing on in-house system testing for quality assurance of NMT.
This testing methodology requires human-constructed reference
translations as the ground truth (test oracle) for example natural
language inputs. The testing methodology has shown benefits
of quickly enhancing an NMT system in early development
stages. However, in industrial settings, it is desirable to detect
translation failures without reliance on reference translations for
enabling further improvements on translation quality in both
industrial development and production environments. Aiming
for a practical and scalable solution to such demand in the
industrial settings, in this paper, we propose a new approach for
automatically identifying translation failures without requiring
reference translations for a translation task. Our approach
focuses on a property of natural language translation that can be
checked systematically by using information from both the test
inputs (i.e., the texts to be translated) and the test outputs (i.e., the
translations under inspection) of the NMT system. Our evaluation
conducted on real-world datasets shows that our approach can
effectively detect property violations as translation failures. By
deploying our approach in the translation service of WeChat (a
messenger app with more than one billion monthly active users),
we show that our approach is both practical and scalable in the
industrial settings.

Keywords—neural machine translation, failure detection, ML
quality assurance

I. INTRODUCTION

Neural Machine Translation (NMT) [1] has been widely

adopted over recent years due to its simple models and

satisfactory effectiveness on various machine translation tasks

compared with the traditional Statistical Machine Translation

(SMT). Unfortunately, in practice, NMT systems are often

found to produce translation failures in the outputs, while var-

ious past incidents [2] have shown undesirable consequences

brought by translation failures.

Aiming to reduce in-field translation failures for NMT

systems before the deployment to serve users, developers have

been relying on in-house system testing using parallel corpora,

i.e., collections of bilingual text pairs. Each test case used in

the system testing corresponds to a text pair, including the

original text (i.e., the text to be translated) as a test input

and its corresponding human-provided reference translation as

∗ Equal contributions.

an example of valid test outputs. Then developers typically

use a special test oracle that (1) calculates the translation

quality score (e.g., BLEU score [3]) for measuring lexical

similarities between the output and the reference translation,

and (2) checks whether the calculated score is greater than a

threshold value to determine whether the test case passes.

While reference-based system testing has been shown useful

for in-house quality assurance of industrial NMT systems,

a strategy of detecting translation failures without reference

translations brings further improvements to translation qual-

ity when reference translations become unavailable. Besides

helping build a much wider scope of test cases, such strategy

enables in-vivo testing [4], which leverages translation requests

from real users in the production environment as test inputs.

The strategy not only exposes unseen types or instances of

translation failures not revealed by limited in-house system

test cases, but also allows real-time monitoring and handling

of translation failures in the production environment.

Aiming for a practical and scalable solution to such demand

in industrial settings, in this paper, we propose a new approach

for automatically identifying translation failures. Our approach

focuses on a translation property that generally holds and can

be checked systematically: the original text and the translation

generally have one-to-one mappings in terms of their con-

stituents, e.g., words/phrases. Any violation of this property in

the translation under inspection indicates potential translation

failures. With the support of information from both the inputs

(i.e., the original texts) and outputs (i.e., the translations under

inspection) of the NMT system, our approach includes two

algorithms for detecting two specific types of violations of

this property, respectively: (1) under-translation, where some

words/phrases from the original text are missing in the trans-

lation, and (2) over-translation, where some words/phrases

from the original text are unnecessarily translated multiple

times. Based on our experience in deploying NMT models

in large-scale industrial settings, many translation failures can

be reflected by these two types of violations.

We have deployed our approach in both the development

and production environments of WeChat, a messenger app with

more than one billion monthly active users [5]. Our experi-

ence [6] in enhancing WeChat’s translation service demon-

strates that our approach is both practical and scalable. In the

1

2019 IEEE/IFIP International Conference on Dependable Systems and Networks Industry Track

978-1-7281-3032-3/19/$31.00 ©2019 IEEE
DOI 10.1109/DSN-Industry.2019.00007

development environment, using our approach, NMT model

developers manage to find the NMT system’s translations that

contain translation failures and are previously not detected by

reference-based approaches. In the production environment,

our approach processes about 12 million unique translation

tasks every day, enabling developers to collect translation tasks

with unseen types or instances of translation failures. Develop-

ers are also able to observe the performance of the deployed

models in real-world usages and handle translation failures

instantly through switching to backup models when necessary.

We provide an online demonstration1 for our approach on tasks

of English and Chinese translation.

II. BACKGROUND

A. Translation-Property Violation

Under-translation. For a specific translation task, if the

translation misses one or more words/phrases from the text

to be translated, then the translation is considered under-

translated. Table I shows one example of under-translation: the

underlined Chinese word corresponding to ‘mother’ is missing

in the English translation.

Over-translation. For a specific translation task, if any

word/phrase is unnecessarily translated multiple times, then

the translation is considered over-translated. Table III shows

an example of over-translation, where the underlined Chinese

phrase representing ‘can never be changed’ appears four times

in the translation, while there is only one occurrence (as

indicated by italicized words) in the original sentence. Such

repetition is redundant since it does not change the meaning

of the translation.

These two specific types of violation can directly affect

the user experience and even lead to misunderstanding of the

translation. Also according to our observation, these two spe-

cific types of violation can indicate more types of translation

failures, including wrong names and incorrect interpretation

of numbers.

B. Translation Quality Scores

There are various translation quality scores that can be used

to measure the overall quality of translations with respect

to reference translation(s). The BLEU (BiLingual Evaluation

Understudy) score [3] is one of the quality scores most widely

used for machine translation. In particular, a higher BLEU

score indicates that the translation under inspection is closer

to the reference translation(s), being considered of higher

translation quality. The range of the BLEU score is [0, 1],
which is often presented as a percentage value (i.e., [0, 100]).

III. DETECTION ALGORITHMS FOR UNDER- AND

OVER-TRANSLATION

A. Building Mappings Between Bilingual Words and Phrases

Aiming to support two detection algorithms, based on a

massive training dataset for translation tasks (i.e., parallel

corpora), we aim to build the mapping from each word/phrase

1https://bit.ly/2P4hEB4

in the source language to a set of words/phrases representing

corresponding valid translations in the destination language.

There are two steps to achieve this goal: phrase identification
and mapping learning.

Phrase identification. The purpose of identifying phrases

from texts (of the target language) is to handle the situ-

ations where a phrase’s meaning cannot be conveyed by

the combination of its constituent words’ meaning. Aiming

for efficiency and robustness, we assume that each phrase

can be represented by a pair of keywords, which are two

words conveying major semantics in the phrase. Under such

assumption, we can enumerate all pairs of words appearing

in each sentence of the target language from the parallel

corpora, count the occurrences of these word pairs, and pick

the word pairs with frequent occurrences (judged based on a

predefined threshold cph) to regard them as potential keyword

pairs. Mapping learning (as introduced next) further helps

identify real keyword pairs. Another observation is that phrases

are usually short, and thus a limit should be imposed on

the distance of two words under consideration to form a

phrase. We denote the maximum distance of two words under

consideration as dph. As a concrete example, when dph = 1,

for a 4-word sentence w1w2w3w4, we obtain 5 unique word

pairs: 〈w1, w2〉, 〈w1, w3〉, 〈w2, w3〉, 〈w2, w4〉, 〈w3, w4〉.
Mapping learning. We employ the recommendation algo-

rithm of Item-based Collaborative Filtering [7] to build the

translation mappings for words/phrases. Originally used in

scenarios such as product recommendation [8], the algorithm

predicts each user’s potentially interested items by looking at

the user’s rating history and searching for items similar to the

user’s highly rated items. The algorithm exploits a key insight

that similar items should have similar ratings from massive

users. To reduce our mapping problem to the recommendation

problem, we view each training translation task as a user, each

word/phrase appearing in either the original text (of the source

language) or reference translation (of the destination language)

as an item with a positive rating, and all other words/phrases as

items with negative ratings. Under such settings, if two words

have similar meaning in two languages, then they should have

similar ratings (i.e., occurrence patterns in training translation

tasks). Specifically, we define the user rating matrix M as

follows:

Mk,w =

{
1 if w appears in P k

s or P k
d

0 otherwise

where w is a word/phrase, P k
s and P k

d denote the original

text and the reference translation in the training translation

task numbered k, respectively. Then, we calculate the rel-

evance/similarity between ws (a word/phrase in the source

language) and wd (a word/phrase in the destination language)

using the Cosine similarity [9]:

Rws,wd
=

−−−→
M·,ws

· −−−→M·,wd

||−−−→M·,ws ||2 · ||
−−−→
M·,wd

||2
=

∑
k Mk,wsMk,wd√∑

k M
2
k,ws

√∑
k M

2
k,wd

2

TABLE I: Example translation with under-translation violation

Chinese (original) English (translated) English (reference)

三姑给你的红包给你妈妈了。 Third Aunt gave you a red envelope. Third Aunt gave your red envelope to your mother.

TABLE II: Example translation lists for the under-translated word in Table I

origin error rate trans 1 trans 2 trans 3 trans 4 trans 5 trans 6 trans 7 trans 8 trans 9 trans 10
妈妈 0.04116 mother mom mum mama mommy moms mothers mummy my her

We then build the mappings based on the relevance between

words/phrases in two languages. Specifically, for each word ws

in the source language, we consider a total of ctr words in the

destination language with the highest relevance to ws to be its

valid translations, where ctr is a predefined threshold value.

B. Detection Algorithm for Under-translation

Under-translation detection can now be achieved by check-

ing the existence of word/phrase translations in the whole

translation text. Specifically, for each word/phrase in the orig-

inal text, we obtain the list of its corresponding word/phrase

translations, and check whether any of these word/phrase

translations appears somewhere in the translation text. We

use a real-world example (shown in Table I) to illustrate

this process. The underlined Chinese word (corresponding to

‘mother’ in English) is missing in the English translation.

Our algorithm first produces the contents in Table II as part

of the mappings constructed in the previous steps. In the

table, ‘origin’ indicates the words to be translated and ‘trans

k’ denotes the k-th most relevant translation. Our algorithm

then goes through each translation for the Chinese word and

checks whether it appears in the translation being examined.

The algorithm subsequently finds that none of translations in

Table II appears in the translation being examined (as shown

in Table I) and marks the translation with a potential under-

translation violation.

However, there might be some words/phrases of the source

language incurring implicit translations, i.e., the translations of

these words/phrases usually do not show up in the translations

of the whole sentences. Examples include the and to in

English. Our techniques described earlier can likely produce

many false positives due to such phenomenon. We introduce

error rate filtering to address such limitation. Specifically,

we calculate the error rate ews for each word/phrase ws of

the source language on the training dataset using ews =
Ne

ws
/Nws

, where Ne
ws

denotes the number of sentence pairs

that are considered under-translated on ws, and Nws
is the

number of translation sentence pairs involving ws. Then,

we disregard any under-translation caused by missing ws on

translations under examination if we find that ews > eth,

where eth is a predefined threshold value. Table II shows

the technique being used in the example translation, where

‘error rate’ shows the error rate for the missing Chinese word.

Our algorithm confirms that the error rate is within eth (usually

set to be 0.2 in our production environment) for the missing

Chinese word before concluding that the translation has a

potential under-translation violation.

TABLE III: Example translation with over-translation violation

English (original) Chinese (translated)

U have to admit that some-
thing can never be changed,
live with it or break with it!

你必须承认，有些东西是永
远无法改变的，无法改变的，
无法改变的，无法改变的！

C. Detection Algorithm for Over-translation

Our over-translation detection algorithm is based on fre-

quencies of words appearing in the translation. Specifically,

we count the occurrences for each word appearing in the

translation under inspection, and mark the word as over-

translated if more than one occurrence is found and the

occurrences are near to each other. However, there are two

issues with this approach. First, particles such as have, the, and

to in English tend to have multiple occurrences and no actual

meaning in many well-formed expressions. These words could

confuse over-translation detection and cause false positives.

Second, some words/phrases might have multiple occurrences

in the original text, and they are probably also supposed to

appear multiple times in the translation.

To address the first issue, we remove all such common

words (i.e., stop words) from the translation under inspection

before conducting over-translation detection. To address the

second issue, our algorithm leverages the word/phrase transla-

tion mappings introduced in the previous steps in the other di-

rection, aiming to find out a set of words/phrases (of the source

language) that can all be translated to each word/phrase wd in

the translation under inspection. Our algorithm then counts the

number of words/phrases in the original text that fall in the set

(denoted as counts(wd)) as well as the number of occurrences

of wd (denoted as count(wd)). Finally, we consider a wd to

be over-translated if we find counts(wd) < count(wd).

Table III shows an example with an over-translation vi-

olation to illustrate our algorithm. The Chinese translation

contains 3 extra repetitions for the translation of “can never be

changed”. Our algorithm first discovers that there are 4 in-

stances of “无法” and “改变”. Then, our algorithm looks

up the word/phrase translation mappings and finds that “can

never” and “changed” have such translations. Subsequently,

our algorithm finds that these two English words/phrases ap-

pear only once in the original text, fewer than the occurrences

in the translation under inspection. Finally our algorithm marks

the translation with an over-translation violation.

3

TABLE IV: Overview of the evaluation datasets

Name Lang Type #all #ws #U #O

ench news en-cn News 200 7497 54 4
chen news cn-en News 200 7418 31 8
ench oral en-cn Oral 300 3237 42 1
chen oral cn-en Oral 300 2918 37 5

TABLE V: Detection results on the evaluation datasets

under-translation over-translation
P R F P R F

ench news 0.51 0.69 0.59 0.38 0.75 0.50
chen news 0.43 0.65 0.52 0.73 1.00 0.84
ench oral 0.52 0.40 0.45 0.33 1.00 0.50
chen oral 0.30 0.49 0.37 0.80 0.80 0.80

IV. EVALUATION

A. Evaluation Setup

We evaluate our approach on four manually-labeled datasets

consisting of real-world translation tasks and corresponding

translation failures. We build the word/phrase mappings using

16 million sentence pairs crawled from various sources (e.g.,

example word/phrase usages in dictionaries) on the Internet.

As shown in Table IV, each evaluation dataset contains orig-

inal sentences randomly sampled from larger datasets (crawled

online and different from the training datasets), translations

under inspection (that contain translation failures), and labels

manually added by us indicating the existence of the two types

of violations. #all denotes the total number of sentence pairs,

#ws denotes the total number of words of the source language;

#U and #O denote the numbers of sentence pairs flagged

with under- and over-translation violations, respectively. ‘en-

cn’ and ‘cn-en’ indicate translating from English to Chinese

and from Chinese to English, respectively.

B. Algorithm Effectiveness

Tables V shows the result summary of under-translation

detection and over-translation detection. The precision, recall,

and F-measure are abbreviated as ‘P’, ‘R’, and ‘F’, respec-

tively. We empirically set ctr = 10 and cph = 10 for all

the experiments, eth = 0.15 for the experiments on the

‘ench news’ and ‘chen news’ datasets, and eth = 0.25 for

the experiments on the ‘ench oral’ and ‘chen oral’ datasets.

As shown in Table V, our approach achieves reasonable F-

measures on all the datasets, with recalls generally contributing

more to the scores.

C. Experience of Deployment

We have deployed our approach in both the development

and production environments of WeChat. In the development

environment, the NMT model developers manage to find the

NMT system’s translations that contain translation failures and

are previously not detected by reference-based approaches.

In the production environment, our approach processes about

12 million unique translation tasks every day, enabling the

developers to collect translation tasks with unseen types or

instances of translation failures. On top of that, the developers

are able to observe the performance of the deployed models

in real-world usages and handle translation failures instantly

through switching to backup models when necessary.

Our approach also helps collect 130,000 English and

180,000 Chinese meaningful words/phrases (i.e., words or

phrases with low error rates when learning from the training

data). These words are used as in-house test cases for test-

ing and improving WeChat’s continuously-improved machine

translation model. Using our approach also helps diagnose

issues in other competing machine translation systems released

by other providers. In practice, our approach is able to

detect potential defects lying in the design, implementation,

or training data in multiple machine translation systems.

V. CONCLUSION

To address the demand in industrial settings, in this paper,

we have presented our approach for automatically identifying

translation failures without requiring reference translations,

with focus on two specific types of translation-property vi-

olations. Our evaluation conducted on real-world datasets

has shown that our approach can effectively detect property

violations as translation failures. By deploying our approach

in the translation service of WeChat, a messenger app with

more than one billion monthly active users, we show that

our approach is both practical and scalable in the industrial

settings.

ACKNOWLEDGMENT

The authors from Illinois CS were supported in part by NSF

under grants no. CNS-1513939, CNS-1564274, CCF-1816615,

and by a 3M Foundation Fellowship.

REFERENCES

[1] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural probabilistic
language model,” Journal of Machine Learning Research, vol. 3, no. Feb,
pp. 1137–1155, 2003.

[2] A. Okrent. (2016) 9 little translation mistakes that caused big
problems. [Online]. Available: http://mentalfloss.com/article/48795/
9-little-translation-mistakes-caused-big-problems

[3] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: A method
for automatic evaluation of machine translation,” in Proc. 40th Annual
Meeting on Association for Computational Linguistics, 2002, pp. 311–
318.

[4] C. Murphy, G. Kaiser, I. Vo, and M. Chu, “Quality assurance of software
applications using the in vivo testing approach,” in Proc. International
Conference on Software Testing Verification and Validation, 2009, pp.
111–120.

[5] R. Hollander. (2018) WeChat has hit 1 billion monthly
active users. [Online]. Available: https://www.businessinsider.com/
wechat-has-hit-1-billion-monthly-active-users-2018-3

[6] W. Zheng, W. Wang, D. Liu, C. Zhang, Q. Zeng, Y. Deng, W. Yang, P. He,
and T. Xie, “Testing untestable neural machine translation: An industrial
case,” in Proc. 41st International Conference on Software Engineering:
Companion, Poster, 2019.

[7] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabo-
rative filtering recommendation algorithms,” in Proc. 10th International
Conference on World Wide Web, 2001, pp. 285–295.

[8] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: Item-
to-item collaborative filtering,” IEEE Internet computing, vol. 7, no. 1,
pp. 76–80, 2003.

[9] P. Dangeti, Statistics for Machine Learning. Packt Publishing Ltd, 2017.

4

